Zero-Knowledge Inclusion Proofs

Student

Roman Bogli

Advisor
Prof. Dr. Mitra
Purandare

Subject Area

Computer Science

Project Partner
IBM Research,

Riischlikon, Ziirich

OOST

Introduction: The fields of computer science and
cryptography opened the door to the most recent type
of medium of exchange, namely cryptocurrencies
which elevates the quality of money traits even more.
These traits include unforgeability, verifiability,
portability, divisibility, fungibility, durability, and —
exclusively in the case of digital money —
programmability. Prominent cryptocurrencies, such as
Bitcoin for example, additionally introduce the trait of
being censorship-resistant through the use of
Distributed Ledger Technology (DLT) powered by
proof-of-work consensus mechanisms.

Problem: A disadvantage of DLT systems concerns
the risk of loss of user privacy. This stems from the
requirement for transactions to remain auditable for
all, resulting in their transparent recording within
publicly available blockchain data structures.
Consequently, observers may track individual token
movements, negatively impacting user privacy.

Also, the security model of digital money usually
breaks in the scenario of compromised, stolen, or lost
keying material used for digital signatures. Although
there are strategies to minimize this risk, there is no
such thing as absolute security. This becomes
especially delicate in systems where a money-issuing
authority uses keying material to sign or mint new
tokens, allowing a successful attacker to mimic
minting and thereby counterfeit money.

Lastly, the concern of being quantum-resistant urges
adopting new algorithms grounded on Post-Quantum
Cryptography (PQC). Therefore, a future-oriented
digital money solution must account for this
development and upgrade the employed
cryptographic primitives to quantum-safe versions.

In summary, the problem encompasses the question
of how to verifiably prove a specific token’s validity in
a trustless and quantum-resistant setting without
revealing which specific token it concerns in order to
preserve user privacy.

Approach / Technology: This work describes a
solution to this problem that employs Zero-Knowledge
Proof (ZKP) protocols to convince a verifying party of
a token’s inclusion in a public set of valid tokens,
encoded as Merkle tree data structure, without
revealing the token specifically.

Preliminary, the fundamental concepts of
cryptographic hash functions, commitment schemes,
and Merkle trees are explained, followed by a general
introduction to ZKP protocols.

In order to contribute to the prospective goal of
implementing a minimum viable product of such a
proof system, this work additionally provides an
overview of identified implementation facilitating

automation frameworks, which forms the basis for
future endeavors in this topic.

Merkle Tree
Own presentment

hg = H(1 | hoy | ho3)
hos = H(1 | hz | h3)

[hz —H(| dz)] [h3 = H(0| d3)]

hoy = H(1 | ho | 1)

/

[hg —HQ| do)] [hl

H

0/dy)

Interactive (A) and Non-Interactive (B) ZKP Analogy
Own presentment

&Ogg)
Q
222 &

(A) «Ali Baba Cave»

(B) «Where’s Waldo»

Inclusion Proof Algorithm
Own presentment

Algorithm 1 Inclusion Proof
Input: Private information (v, 7, Pyun)
Output: Computed root hash Hy
1: procedure PROOF(v, 7, Pays)
22 H < h(0x00 | v |7)
3 1 < len(Pays)
4 i+ 0
5
6:
7
8;

> create leaf node hash

> get size of authentication path

> initialize authentication path access variable
> loop through all elements in P,
> decision on concatenation order
> create intermediate node hash

while i < n do

if Pyysn[i].isRightHandSide then

H < h(0x01 | H | Payafil)
3 else

9: H < h(0x01 | Pou[i] | H)

10: ii+1

1: Hz+H

12: return Hy

> create intermediate node hash
> move to next Py, element
> last hash value represent root hash

Eastern Switzerland University of Applied Sciences | Project Theses 2023 | Master of Science in Engineering | Technik und IT

