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Introduction: Heat exchangers are crucial in HVAC
systems but often require complex simulations. This
thesis explores machine learning-based surrogate
models to simulate heat exchanger behavior more
time efficient. Data preprocessing involved
normalization, truncation, windowing, and batching.
The data includes five time-series as input features
and two time-series as output features.

Approach: Data preprocessing involved
normalization, truncation, windowing, and batching.
Several machine learning models, including Multi-
Layer Perceptrons (MLP), Spectral State Space
Models (SSSM) and Recurrent Neural Networks
(RNN) such as Long Short-Term Memory networks
(LSTM) and Gated Recurrent Units (GRU) were
examined. These models were optimized to capture
temporal dynamics and predict the corresponding
output. LSTMs and GRUs addressed the issue of
sequence memory through gated mechanisms, while
SSSMs leveraged spectral analysis for state
modelling and the MLP was used as simple baseline.
The Mean Squared Error (MSE) was used to evaluate
predictive accuracy and Loss in the training process.
In the testing phase, multiple metrics such as the
MSE, RMSE, MAE, R2-score and relative MAE were
employed to assess the performance of the models.

Result: The GRU model was identified as the most
effective model in terms of capturing the patterns
exhibited by the time series, with LSTMs exhibiting a
marginally lower level of accuracy. The models
demonstrated proficiency in sinusoidal and linear
patterns, while struggeling with abrupt changes.
Long-term predictions indicated the robustness of
RNN, demonstrating no error propagation over
extended sequences and effective generalization to
new and complex

data.

The findings emphasize the potential of machine
learning-based surrogate models in reducing
computational demands for physical simulations.
Future work will explore integrating these models into
closed-loop systems to test also the time saving and
efficiency aspect. Additionally, there is scope to
expand their application to encompass more noisy
and complex patterns.
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Training and validation curves of the LSTM model in the original
scale over the epochs.
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Predictions and errors of all models, as well as the actual data in black.
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