
Student

Fiona Pichler

Text-to-SQL für DataGovernance Technologies und die
Aus- und Weiterbildung

Own presentment

Fig. 1: A demonstration of how the chatbot transforms a user
prompt into valid SQL and executes it on a database.

Own presentment

Fig. 2: Test results using RAG on the Pagila database with
different LLMs, each computed over 10 test runs.

Own presentment

Fig. 3: Reliability calculated over 10 runs for all test cases,
approaches and databases. Summarized as average per LLM.

Eastern Switzerland University of Applied Sciences | Student Research Projects 2025 | Bachelor of Science OST | Informatik

Artificial Intelligence,
Software

Subject Area

Prof. Stefan F. Keller
Advisor

Introduction: This term project was a teamwork with
the bachelor thesis of Benjamin Kern. Providing non-
technical professionals with actionable insights
derived from data is the vision of Swiss software
company DataGovernance Technologies Ltd (DGT).
The emergence of Large Language Models (LLMs)
has made this vision increasingly achievable, in
particular by enabling the generation of SQL queries
directly from natural language (NL) input. Similarly,
OST seeks to address a related challenge by making
the process of learning SQL more accessible and
engaging for its students. Through interactive and
efficient methods, OST aims to simplify the
complexity of SQL for learners. This project explores
different approaches to translating NL into SQL and
implements a proof of concept (POC) to evaluate their
potential and effectiveness using two example
datasets.

Approach: The project began with an investigation of
suitable methods for incorporating schema
information into LLMs and existing work on the
subject. This research identified four core
approaches: pure LLM as a baseline, in-context
learning, fine-tuning of the LLM, and Retrieval-
Augmented Generation (RAG). Fine-tuning was ruled
out due to an insufficient amount of training data. The
remaining three approaches were implemented in
Python and relevant LLM APIs and thoroughly
evaluated. A number of LLMs were selected for
performance evaluation, including Mistral, phi3:3.8b,
phi3:14b, llama3.1:8b, and GPT-4o-mini. Two
datasets were selected: One was provided by DGT
(MS SQL Server) and for the OST use case it's the
well-known Pagila dataset (PostgreSQL). The test
SQL queries and their corresponding user prompts
were extracted from database lecture slides and
others were generated using ChatGPT. They were
divided into basic and advanced test cases.

Result: The results of the test queries were evaluated
in terms of 1. similarity (how similar is an output
compared to the example solution?), 2. validity (is the
output valid SQL?), 3. executability (can the output be
executed and are the generated column names
correct?), 4. reliability (how similar is the output to the
same user prompt?). It proved difficult to evaluate
similarity using the usual cosine function, as the same
SQL resultset can be achieved with different SQL
queries. Since the pure LLM approach guesses table
names, the similarity metric was still considered
useful for comparison. While executability includes
validity, the validity metric can be achieved without
the correct table names, which is needed for
comparison with the pure LLM approach. Fig. 2
shows the result for RAG for executing the SQL
queries on the databases. For the advanced test
cases, on average 45% can be executed on the
databases, with only 70% of the requested columns
extracted. Getting the LLMs to output valid SQL

without additional explanation was a challenge. The
hallucinations could not be completely eliminated,
resulting in the low number of executable SQL
queries. The reliability metric in Fig. 3 shows the high
number of hallucinations by phi3:3.8b. In this thesis,
the llama3.2 model was found to have the most
potential for further development. Further work could
focus on eliminating the hallucinations as well as
providing more fine-grained test metrics to thoroughly
analyse the shortcomings of the LLM. Emerging
approaches not covered by this work could be
investigated, such as structured output, multi-step
reasoning, and agent-like function calling.

