Exploring the use of Haskell to Program
Microcontrollers used in Robotics Platforms

Student

Olivier Lischer

Advisor
Prof. Dr. Farhad D.
Mehta

Subject Area
Computer Science,
Software and Systems,
Mechatronics and
Automation, Sensor,
Actuator and
Communication
Systems

OOST

Introduction: To introduce children in schools to
electronics and programming, "educational robotic
kits" are being developed.

Traditionally, systems programming languages like
C/C++ are used for embedded development and
controlling hardware.

To simplify the process and allow children to focus on
the general concepts, often a Scratch based IDE is
often provided alongside the kit. Python is also often
offered as an option for older children and more
advanced use cases.

These technologies all follow the imperative
programming paradigm.

Children using these technologies are introduced to
thinking in an imperative model from an early stage.
Currently, there are no kits available that are targeted
for functional programming languages.

This project demonstrates how a beginner-friendly kit
can be programmed using Haskell, a functional
programming language.

Approach / Technology: To run the Haskell source
code on a robotic kit, it must first be compiled to a
binary format. Although an operating system was
developed using the standard Haskell compiler GHC,
it is not suitable for this project. First, GHC normally
requires a working operating system. A custom patch
was developed to remove this restriction during the
operating system development. The second problem
is that GHC often produces a binary that is too large
for the robotic kit.

An alternative approach could use the idea of
"Compiling to categories" by Conal Eliot. This
approach was used by Kittyhawk to power their
aircraft. They developed "categorifier", a GHC plugin
that produces C code after GHC performed the
parsing and type checking. This approach was also
not an option because the current examples do not
compile, and the project is no longer being
developed.

Lennart Augustsson started to develop a new Haskell
compiler called MicroHs. It produces binaries small
enough that it can run on microcontrollers. In this
project, MicroHs was extended to support the
Raspberry Pi Pico development board.

Result: First, the MicroHs project was extended to
support the Raspberry Pi Pico RP2040
microcontroller. To ensure that the resulting binary
can be run on the microcontroller, a simple
application that turns the built-in LED on and off was
developed.

After the successful prototype, the goal was to
develop a line following robot. The PicoGo was used
as a kit. It already comes with motors and sensors
and can be controlled using the Raspberry Pi Pico.
The Raspberry Pi Pico provides no Haskell SDK, but
only C SDK to interact with the hardware. To use the
functions from the C SDK, Haskell's Foreign Function

Interface (FFI) was used to call the C functions. To
ensure type safety and provide a better Haskell
experience, wrapper functions and data types were
developed for all used functions.

The logo of Haskell — purely functional programming language
http://static.igstan.ro/haskell-logos/png/logo2.png

Raspberry Pi Pico 2040
https://www.pi-shop.ch/raspberry-pi-pico

PicoGo Robot for Raspberry Pi Pico
Own presentment

Eastern Switzerland University of Applied Sciences | Project Theses 2025 | Master of Science in Engineering | Technik und IT

