
Graduate

Eliane Irène Schmidli

Using Functional Reactive Programming for Robotic Art

Own presentment

Figure 1: Implementation of the behavior of Edge Beings using
imperative style (simplified)

Own presentment

Figure 2: Implementation of the behavior of Edge Beings using
FRP (simplified)

Source: Pors & Rao Studio
Figure 3: Sketch of the artwork Edge Beings

Eastern Switzerland University of Applied Sciences | Master Theses 2024 | Master of Science in Engineering | Technik und IT

Pors & Rao Studio,
Bangalore, India

Project Partner

Computer Science,
Software and Systems

Subject Area

Dr. Joachim Breitner
Co-Examiner

Prof. Dr. Farhad D.
Mehta

Advisor

Introduction: Usually, the control software for robotics
applications is written in a low-level imperative style,
as shown in Fig. 1. This method intertwines the
program sequence with commands for motors and
sensors. To describe the program’s behavior, it is
typically divided into different states, each
representing a specific system condition. It can be
challenging to recognize the points at which state
transitions are triggered. This way of programming
complicates the comprehension of the code, making
changes to the program flow a tedious task.

Functional Reactive Programming (FRP) offers a
composable, modular approach for developing
reactive applications. To compare FRP with the
conventional imperative style, the control software for
the robotic artwork Edge Beings by Pors & Rao was
developed. The design uses Yampa, an FRP
implementation in Haskell.

Approach: The artwork Edge Beings involves a
motion sensor and motors, enabling figures to crawl
over the edges of panels (see Fig. 3). The beings'
behavior varies based on the viewer's proximity to the
artwork. If the viewer is too close, the beings only
peek over the edge. Otherwise, social dynamics can
be observed between them. The beings belong to
distinct groups, with only one allowed to emerge
completely at a time. Each group has a suppressor
that can drive away weaker groups, making room for
its own group.

In Yampa, the problem can be implemented similarly
to the described scenario (see Fig. 2). The 'behavior'
function switches from social to disturbed behavior
when a motion event is registered by the sensor and
reverts to social behavior when no motion is detected.
The 'social' function defines the behavior
corresponding to each being's role. For a suppressor
the 'suppressor' function initiates 'creepOut' if it
outranks the current group, allowing the suppressor to
fully emerge. This triggers the ‘currentGroupEv’ event
for the suppressor's group, enabling it to emerge as
well.

Instead of communicating directly with the motors, the
FRP approach produces a signal indicating the
current positions of the beings during runtime. This
signal can be consumed by the motors that move to
the corresponding position. This decouples the
behavior of the beings from the control of motors.

Conclusion: The design allows to modify the behavior
without adapting the hardware control. In addition, the
produced position signal can be used for a simulation
of the artwork. This enables users to visually observe
the effects of modifications in the program without
access to the physical hardware.

Furthermore, the Yampa implementation presents

state transitions more clearly, resulting in a more
understandable code, especially for people with little
programming experience. Nevertheless, getting
started with FRP can be challenging as there are
distinct definitions of FRP and frameworks based on
different concepts.

