
Students

Isaia Brassel

Silvan Kisseleff

Rapid Prototyping in TypeScript

Studienarbeit

Own presentment

Ticket reservation application in which available seats can be
selected

Own presentment
Tutorial page explaining how to update the database

Own presentment
GraphQL API playground demonstrating a sample request

Eastern Switzerland University of Applied Sciences | Student Research Projects 2025 | Bachelor of Science OST | Informatik

Application Design,
Software

Subject Area

Prof. Dr. Olaf
Zimmermann,
Rapperswil, SG

Co-Examiner

Prof. Dr. Olaf
Zimmermann

Advisor

Initial Situation: Building a fullstack web application
with NodeJS in today’s landscape of countless
frameworks and libraries can be daunting. Which one
should you choose? How do you configure the
chosen ones to work together seamlessly rather than
against each other? The available templates tend to
be overloaded with boilerplate code, which slows
down the development process and distracts users
from focusing on what truly matters: building features.

Approach / Technology: Research into rapid
prototyping tools highlighted the potential to
significantly simplify application development by
focusing on adaptability and efficiency. To achieve
this, we selected tools and techniques to build an
application with a GraphQL API that dynamically
adjusts through generated code. This setup
eliminates the need for manual updates whenever
changes are introduced, making the process faster
and more reliable.

To help users understand the dynamic approach, we
created a demo application and a tutorial. The demo
application is an online ticket reservation for a
cinema. We chose this domain because it is easy to
understand. The tutorial guides users through every
aspect of our rapid prototyping method in an
interactive way. As users work through the tutorial,
they gain practical experience with the tools and
techniques, enabling them to apply this approach to
their own projects.

The GraphQL API is implemented with Apollo Server,
combined with automatically generated resolvers
based on TypeGraphQL-Prisma. TypeGraphQL-
Prisma provides out-of-the-box support for create,
read, update, and delete (CRUD) operations for every
data model, reducing the effort required to build and
maintain the API. For custom operations we leverage
TypeGraphQL so that complex processes can still be
realized. The frontend is built with React. This setup
ensures a dynamic, responsive user experience. For
the tutorial, we used Docusaurus, a static website
generator that makes it easy to build documentation-
focused web applications that are accessible and
engaging for users to learn and explore our approach.

This combination of technologies streamlines the
development process, providing both a practical
introduction to rapid prototyping and a robust
foundation for scalable application development.

Result: By writing an easy-to-understand tutorial and
creating a demo application in a well-known domain,
we created a product that brings rapid prototyping to
the developer. The tutorial shows how to adapt the
already existing features with rapid prototyping. It is
also possible to create new features from scratch. To
assure that the user does not get stuck, we provide a
solution for every single step, which users can look at

if they want to. We also ensured that the user does
not have to waste time on a complicated setup by
implementing the entire application in Docker
containers. Different user tests showed that the
tutorials indeed are easy to understand and intuitive
and that our template increases productivity.

