Build-your-own-[grep, Redis] in Haskell

Students

Olivier Lischer

,J#v,:!vJ

Benjamin Plattner

Advisor
Prof. Dr. Farhad D.
Mehta

Subject Area
Application Design,
Software, Software
Engineering - Core
Systems, System
Software

Project Partner
CodeCrafters.io, Sarup
Banskota, 2041 East St
PMB 45, Concord CA
94520, California, USA

OOST

Introduction: Often, the best ways to learn something
new is to use it. Once you get past a minimum
understanding of how 'this new thing' works, applying
it in a real project is the key to master it.

As a software engineer you use many tools without
ever really looking at the inner workings. When you
embark on the adventure of learning a new
programming language, this poses the ideal
opportunity to apply the fresh knowledge to
something you are very familiar with as a user.

This is the idea behind the build-your-own-x concept,
where x stands for an application of your liking.

Objective: Many tutorials exist online which you can
follow to implement your chosen tool in that new
programming language you are just getting to know
better. However, few of them are written for Haskell, a
functional programming language known for its static
and strong type system.

The purpose of this work is to provide detailed
Haskell tutorials for two Build-Your-Own-Xs - grep
and Redis.

Result: Both tutorials are fully reviewed and publicly
available as open-source projects.

This open-source repository is maintained by our
project partner CodeCrafters, a start-up that
specializes in programming courses for experienced
software engineers.

The material is also planned to be used as part of the
functional programming course at the OST.

One of the stages for a user to complete at CodeCrafters - our
tutorials are included in their Solutions part.
Own presentment

Bind to a port 2GS

In this stage, your task is to start a TCP server on port 6379, the default
port that redis uses.
Test Cases

Solutions & Source Walkthrough

Feedback Comments

@ You completed this stage 2 months ago. Stage #1

Submitting a solution to CodeCrafters via Command Line
Interface to receive feedback on its correctness.
Own presentment

|| /_\ B =l

A I AN A R VT R Ty A VA
Ol F L CHI 2o
/ I /T NP | I B Wl

\ |

Welcome to CodeCrafters! Your commit was received successfully.

Running tests on your codebase. Streaming logs...

An example of the tutorial for grep: it includes detailed explanations and code references.

Own presentment

Implement Pattern Matching Logic

Basic Functions

potentially reusable in the future.

type M a = [a] —> [[a]l

singleM :: (a —> Bool) -=> M a

In functional programming your application logic is composed of many small functions.

Before we write our first function we create a type alias for our matching functions (a.k.a., matchers). A matcher M for characters of
type a is a function that accepts a string (i.e., a list in our case) of as as input and returns the strings remaining after all successful
matches. Note: a character, unless otherwise specified, can be of any type, not just Char. This makes our code more general and

We begin with the most basic function: s ing LeM. It checks if the first character from the input matches a given predicate.

Eastern Switzerland University of Applied Sciences | Student Research Projects 2023 | Bachelor of Science OST | Informatik

