Philipp Marc

Bolliger Scherrer

An Analysis Platform for OpenStreetMap with Spatial SQL and GraphQL
Extended OpenStreetMap Database Two (EOSMDBTwo)

Database updater W

Client device

data provider

PostgresaL
database

)

raphQL client

GraphQL API

{—— oSM saL Terminal (——

Deployment diagram of EOSMDBTwo
Own presentment

Map showing all shops within 20 meters of a fuel station as result of
a GraphQL or SQL query
Own presentment

Explorer

X
W PostGraphiQL > Prettify || H

» planetOsmNode

» planetOsmNodeById

» planetOsmRel

» planetOsmRelById

» planetOsmiay

» planetOsmWayById

» pointsWithinRangeofPoints

¥ polygonskithinRange0fPolygons
after:

+ query ShopsInRangeOffuelStations {

polygonsWithinRangeOfPolygons (
keygoal: "amenity"
valuegoal: "fuel
keyinrange: "shop”
valueinrange: "*"
radius: 0.02

) &

before: nodes {

> filter:
first:
Bkeygoal: "amenity "

label
geon {
geojson

Mkeyinrange: "shop" S ¥

last: } }
offset: 6}
Mradius: 0.02 7
Mvaluegoal: "fuel "

Mvalueinrange: "* "

> edges

PostGraphiQL: Interface as implemented using PostGraphile
showing the GraphQL query which produced figure 2.
Own presentment

B HSR

HOCHSCHULE FUR TECHNIK
RAPPERSWIL

FHO Fachhochschule Ostschweiz

Introduction: OpenStreetMap (OSM) provides geospatial data of the world which
contains massive information that offers an almost untapped potential for spatial data
analytics. Yet the efficient processing of this kind of data remains a big data
challenge.

One of the existing approaches is the EOSMDBOne (Extended OpenStreetMap
Database One), which covers just Switzerland and Liechtenstein, based on a
PostgreSQL database and the PostGIS extension, which offers geospatial calculation
functions. However, the current database schema is sub-optimal for certain
geospatial queries, and some of the data pre-processing tools involved are no longer
maintained.

Definition of Task: The main task of this work was to implement the EOSMDBTwo
with an adapted database schema as compared to EOSMDBOne. And it must be
based on up-to-date OSM data pre-processing tools. Other tasks include allowing for
more flexible configurations e.g. of data sources as OSM data extractions, and
maintaining responsiveness of the PostgreSQL database.

SQL was given being the natural API to databases. In addition - since GraphQL
became an important alternative to REST services - another requirement was to
evaluate and implement a GraphQL API service. Furthermore, a SQL web frontend
should be created, called OSM SQL Terminal, where data from the EOSMDBTwo
can be queried and visualized as an interactive web map.

Result: The software tool chain to load OSM data from well-known data repositories
was evaluated. The resulting tools used are PyOsmium and osm2pgsql. The
database schema was revised based on experiences of using the EOSMDBOne.

The EOSMDBTwo contains functionality for configuring a set of OSM extracts to be
initially imported. The EOSMDBTwo then updates the data from the extract
automatically in a defined time interval. To improve query performance, indices were
defined and the PostgreSQL database was optimized for OSM data and this specific
geospatial data analysis use case.

Additionally, a GraphQL API was created, providing functionality to query the
EOSMDBTwo as an alternative to (spatial) SQL. Since GraphQL is based on JSON,
the output of data types geometry and geography are in GeoJSON. A custom
function was added, which executes a more complex query, that searches all objects
that are in a certain range of other objects. The OSM SQL Terminal continued as
separate project outside of the scope of this work.

The documentation of EOSMDBTwo contains educational show cases, and in

conjunction with the OSM SQL Terminal it is ready to replace EOSMDBOne. It is
easily deployable thanks to containerization with Docker.

Studien- und Semesterarbeiten 2021 = Informatik

