Lars
Herrmann

Ursin
Schlapfer

Graduate Lars Herrmann, Ursin Schlapfer

Candidates

Examiner Prof. Reto Bonderer

Co-Examiner Urs Reidt, Hamilton Medical AG, Bonaduz, GR
Subject Area Embedded Software Engineering

Project Partner Mettler-Toledo GmbH, Nanikon, ZH

Zephyr - Open Source Embedded Platform

Zephyr Logo
zephyrproject.org/

Zephyr Ecosystem

-Scheduler

~Kernel objects and services

~low level architecture and board support

- power managment hooks and low level
interfaces to hardware

- Platform specific drivers

- Generic implementation of I/0 APls

- File Systems, Logging, Debugging and IPC
- Cryptography Services

- Networking and Connectivity
- Device Managment

- High Level APIs
- Access to standardized data models
- High Level networking protocols

Zephyr 0S

Kernel / HAL
Application Services

-SDK, tools and developent environment
- Additional middleware and features
- Device Managment and Bootloader

-3rd Party modules and libraries
- Support for Zephyr in 3rd party projects

for example: jerryscript, Micropython

Zephyr Ecosystem lllustration
youtube.com/user/TheLinuxFoundation

Introduction: Zephyr is a lightweight real-time operating system for resource-
constrained devices. It enables cross-platform application development for connected
embedded devices with multiple architectures. The Zephyr project is developed as
open source. It was interesting for the industry partner to find out whether the system
in its current state is suitable for use in the loT embedded environment. In this thesis
the scalability, power consumption, developer friendliness, scheduler performance
and the general development and support level are investigated.

Approach: Several tests were carried out to check the suitability of the real-time
operating system for microcontrollers of different sizes.

The code size of the kernel in flash memory and SRAM per module was evaluated.
These modules include Ethernet, USB, CAN, SPI, PWM and RTT. To investigate the
developer friendliness of the project, a new sensor driver was implemented in the
Zephyr operating system. The performance of the scheduler algorithm was also
tested. The power consumption on a board with different load was measured. During
the preparation and test phase, the quality of documentation and support was
analyzed.

Conclusion: With regard to the required Flash memory and SRAM, the Zephyr meets
the requirements for scalability down to Cortex MO boards with very limited
resources. In a Cortex M4 environment, the scheduler generated a relatively low
CPU overhead of 2% for cooperative and 4% for preemptive scheduling with about
1600 context switches per second. The driver for a temperature and humidity sensor
was successfully implemented. During the implementation, the need for support
became apparent. Support from the Zephyr community is reliable and fast. The
easiest way to get support from the community is to join a Slack group with over 1500
members. Since NXP is a founding member of Zephyr, it is sobering to be referred to
the Zephyr homepage for Zephyr-specific questions.

Zephyr SRAM Usage
M4 Core MCU

10kB

8kB -

K62F
M4

K62F
@~c 48 Byte
@ 972 Byte
() sensor 20 Byte

FLASH 204 Byte
. UsB 3900 Byte
*,) ADC 168 Byte
. PWM 60 Byte
@ rmux 72 Byte
@ Vicroos 44 Byte
@ 168 Byte
@ 100 Byte
@ vart 12 Byte
. GPIO 140 Byte
(Oblsmac. | 2mone | 8
. 1SR STACK 2048 Byte g
g @ vaNsTAK | 1024Byte "
OS USED 400 Byte

Zephyr SRAM Results for FRDM-K64F
Own presentment

B HSR

HOCHSCHULE FUR TECHNIK
. . RAPPERSWIL

FHO Fachhochschule Ostschweiz

Bachelorarbeiten 2020 = Bachelor of Science FHO in Elektrotechnik

