
Joel
Fisch

Remo
Dörig

OpenAPI 3 code binding generator for Haskell
And its Application to Generate a Library for the Stripe Payment System

Initial Situation: OpenAPI 3 is a machine-readable specification standard which can
be used to define the interface of (web-)services (also known as API). This allows
clients to talk to the corresponding service and retrieve data which conforms to the
OpenAPI specification of the service. OpenAPI is the de facto standard in the
industry and many providers of APIs publish such a specification. Stripe, a big online
payment provider, is such a company. As OpenAPI is formally specified, it is possible
to generate code for client implementations. There are generators for many
languages, but for some languages there are either none or none which are working.
Haskell, a purely functional language, is one of the aforementioned languages. In
addition, there is currently no working Haskell library for the newest version of the
Stripe API specification. If a generator for OpenAPI 3 would exist, such a library could
be implemented with low effort. Therefore, the goal of this thesis is to implement such
a code generator which is able to transform an OpenAPI 3 specification into Haskell
code, using Haskell as the implementation language as well.

Result: The previously mentioned code generator was implemented as part of this
thesis. It is able to transform OpenAPI 3 specifications to working Haskell code which
can be used by client applications to retrieve data from an API. As a second result, a
Haskell library for Stripe was generated and published. This library can easily be
updated in the future, if Stripe publishes a new specification for their API in form of
OpenAPI 3. With this newly created library, a demo use case was implemented to
showcase how the generated code can be used. Furthermore, to ensure the correct
functionality of the generator, multiple types of automated tests were created. On the
one hand, unit and property tests were used to check the correctness of single
functions in the code, on the other hand, multiple levels of system tests were
developed. As the generator is a command-line interface application, the system
tests could check the generated code on three levels: on a first level, code generation
and compilation are checked; on a second level, code integration with other client
code using the generated code is ensured; on a third level, real HTTP calls are
executed using the generated code. To allow users to discover the different functions
and types generated, code documentation is generated using Haddock-comments
directly in the code. These comments include meta information retrieved from the
specification and can be extracted and viewed with the tool Haddock, used widely in
the Haskell community.

Conclusion: Within this bachelor thesis, a code generator could be implemented
which can be used to generate code bindings for Haskell. This allows to update the
generated Stripe library (and other libraries using the generator) easily and with low
maintenance effort in the future. Different members of the Haskell community either
plan to use the library to implement commercial software or plan to join forces to
create an even better version of the code generator.

The generated Stripe library can be used to implement payments on
a website.

The three system test levels depend on each other and add
additional checks on every level.

For the generated code, a documentation can be generated (one
part of the Stripe documentation is visible above).

Bachelorarbeiten 2020 ■ Bachelor of Science FHO in Informatik

Own presentment

Own presentment

Own presentment

SoftwareSubject Area
Tom Sydney Kerckhove, CS Kerckhove, Zürich, ZHCo-Examiner
Prof. Dr. Farhad D. MehtaExaminer

Joel Fisch, Remo DörigGraduate
Candidates


